19950313 063

NPS-MA-95-001

NAVAL POSTGRADUATE SCHOOL

Monterey, California

g/

THE (IN)COMPLETE COMPENDIUM OF
COMPUTATIONAL CURIOSITIES:
GIVENS' ROTATIONS

by

C. F, Borges

Technical Report For Period
January 1995 - February 1995

Approved for public release; distribution unlimited

Prepared for: Naval Postgraduate School
Monterey, CA 93943

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93943

Rear Admiral T.A. Mercer Harrison Shull
Superintendent Provost

This report was prepared in conjunction with research conducted for the Naval Postgraduate
School and funded by the Naval Postgraduate School.

Reproduction of all or part of this report is authorized.

This report was prepared

. L

Carl‘o/F Borges
Assistant Professor of Mathematics

Reviewed by: Released by:
44 C A
B /‘amLL 1 W
RICHARD FRANKE PAUL J/MARTO
Chairman , Dean oY/ Research

Accesion For

NTIS CRA&I)g
DTIC TAB
Unannournced 0
Justification

By
Distribution |

Availability Codes

. Avail and/or
Dist Special

-/

UNCLASSIFIED
SECURITY CLAGSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Ta. REPQORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

3. DISTRIBUTION/AVAILABILITY OF REPORT

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

NPS-MA-95-001

5. MONITORING ORGANIZATION REPORT NUMBER(S)

NPS-MA-95-001

6a. NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School

6b. OFFICE SYMBOL
(If applicable)

MA

7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

6c. ADDRESS {(City, State, and ZIP Code)

Monterey, CA 93943

7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943

8a. NAME OF FUNDING /SPONSORING
ORGANIZATION

Naval Postgraduate School

8b. OFFICE SYMBOL
(If applicable)

MA

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and ZiP Code)

Monterey, CA 93943

10 SOURCE OF FUNDING NUMBERS

TASK WORK UNIT

NO

PROGRAM PROJECT
ELEMENT NO. NO

11. TITLE (Include Security Classification)

The (In)Complete Compendium of Computational Curiosities: Givens' Rotations

12. PERSONAL AUTHOR(S)
Carlos F. Borges

13b TIME COVERED

FROM Jan 95

13a. TYPE OF REPORT
Technical Report

10 Feb 95

14 OATE OF REPORT (Year, Month, Day)

15 PAGE COUNT

10

95 February 15

16. SUPPLEMENTARY NOTATION

17. COSATL CODES

FIELD GROUP SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Givens' Rotations

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

Ve look at the properties of Givens' rotations computed and performed in floating
point arithmetic that conforms to the IEEE 754 standard. We describe an algorithm for
constructing computationally orthogonal Givens' rotations.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT
TR uncLASSIFIED/UNUIMITED [SAME AS RPT

3 OTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

223 NAME OF RESPONSIBLE INDIVIDUAL

22b TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL

ACCESSION NO.

Carlos F. Borges 408-656-2124 _MA/Rc
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PACE
S/N 0102-LF-014-6603 UNCLASSIFIED

The (In)Complete Compendium of
Computational Curiosities:
Givens’ Rotations

CARLOS F. BORGES
Code Ma/Bc
Naval Postgraduate School
Monterey, CA 93943

February 15, 1995

Abstract

We lock at the properties of Givens’ rotations computed and performed
in floating point arithmetic that conforms to the IEEE 754 standard. We
describe an algorithm for constructing computationallyorthogonal Givens’
rotations.

1 Basic Concepts

We begin with the following definitions:

F, The set of normalized p-digit binary floating point numbers where
the exponent range is assumed to be infinite (i.e. no overflow or
underflow can occur).

fl(z) For z € R, this is the closest element of F; to z, with the last
binary digit 0 in case of a tie.

We assume throughout that the operations +, —,*, /,and ,/ are cor-
rectly rounded.

2 The Classical Given’s Roatation

Let x = [z1 zg]T be an element of 2. The classical Givens’ rotation is an
orthogonal matrix

such that

Tl
Gx_[;] (1)

Givens’ rotations are usually thought of geometrically as rotation ma-
trices. Indeed, many derivations are given in terms of the geometry of
the vector x in ®* but the author finds that these lead to more confusion
than understanding. Another way of writing a Givens’ rotation is

G = 1 T1 I2
|~z =
Clearly the structure of G guarantees that equation 1 will be satisfied
(at least in exact arithmetic).

Givens’ rotations are useful because they are orthogonal, GTG = I.
In particular

S§C— €S c2-+-s2

GTG— [02-1—32 cs——sc]

If the Pythagorean theorem (c* + s% = 1) applies to the elements, then
we have an orthogonal matrix (Note that the structure of the matrix guar-
antees that the off-diagonal elements are zero, even in floating-point arith-
metic since it is commutative). Indeed, the key to computing a Givens’
transformation is the ability to normalize a vector in R2.

The classical algorithm for constructing Givens’ rotations ([1], p. 45)

is

ifzz =0
c=1;
s =0;

elseif |z2| > |z1|
t=1z1/z0;
s =1/sqrt(1+t%);
c=35%*1;

else
= 12/1‘1;
c=1/sqrt(1 +t*);
s=cxt

end

We propose that a better organization of this algorithm which costs
no more is

ifz, =0
c=1;
s=0;

elseif [z2]| > |z41]
t=zi/z2;
s =sqrt(1/(1 +t?));
c=sx*t

ahie

else

t= I2/121;
¢ =sqrt(1/(1 + t%));
s=cx*t

end

Experiments using extended precision arithmetic show that the second
algorithm is, on average, slightly closer to the correctly rounded Givens’
rotation than the first one.

Usually, the acme of a floating-point computation is to give a correctly
rounded result. Before examining what this means here, consider the
following example.

ExaMPLE: The Givens’ rotation G such that

of1]-[7]
(4 §)

In double precision using the correctly rounded value of 1/4/2 one finds
that the diagonal elements of GTG are roughly 1+ 2.2204107%, This is
only one ulp from the correct value but the end result is that the computed
Givens’ rotation is not orthogonal, it does not preserve norms but rather
increases them.

Note that, in this example, our proposed improvement yields a G where
each of the elements is the correctly rounded element from the Givens’
rotation while the classical one does not.

The underlying cause of the problem we see in the above example
is not due to rounding error in computing the rotation, rather it is the
inability of the floating point system to represent the rotation sufficiently
well. In double precision IEEE 754 arithmetic there is no floating point

is

Sk
Sk

number twice whose square is 1.

3 Computationally Orthogonal Givens’
Rotations

We now propose an algorithm for computing a Givens’ rotation which is
computationally orthogonal. That is, the algorithm computes a matrix
G such that GTG = I to full working precision, the computed matrix G
will be close to the classically computed Givens’ rotation in the Frobenius
norm.

ifz, =90
c=1;
s = {;

elseif |z3| > |z4|

t=z1/29;
s =sqrt(1/(1 + 1?));
b=s%
¢ =sqrt(1l — b};
else
t=zy/zy;
e = sqrt(1/(1 + 1)
b=¢?
s = sqrt(1 — b);
end

We will need to explore certain properties of correctly rounding floating
point arithmetic to see why this works.

The following theorem about correctly rounded square roots is based
on a conjecture of Gragg and will be useful in what follows. It is stated
and proved for 1/4 < z < 1 since we can use exact argument reduction
on the exponent to put any floating point number in this range.

Theorem 1 Letz € Fp be a floating point number such thatl/4 <z < 1,
and let y = fl(\/z) be the correctly rounded floating point representation
of /Z. Then fl(y*) is within 1 ulp of z.

Proof. It is clear that 1/2 < \/z < 1, and hence, since y is correctly
rounded it follows that y = /z + & where |§] < 27(P+)) The exact square
of y is

¥’ =z 4 26/T + 6.

Clearly, if y* and z differ by less than 3/2 of an ulp of z then so will
Fl(¥*) and z because of correct rounding. So we need only show that

|26+/Z + 62| satisfies this bound. Of course
[261/7 + 67| < |24/7 + §)27(PHD).

We consider two cases. First, if 1/2 < z < 1 then VI <A1 -2-P <«
1 — 27+ and it follows that

[2vz + 6] < 27 + 4]
< 2-27P4o=(Pt) o

And hence
[26+/z + 8% < 27F

which is less than 1 ulp of z.

Second, if 1/4 < z < 1/2 then /z < /1/2—2-(p+1) < 1/4/2 —

27(P+2) and it follows that

[2vZ + 8| < V2 < 3/2

|
}

And hence

[26v/Z + 67| < %2‘(”*1)

which is less than 3/2 ulps from z.
O

Theorem 2 Letz € F, be a floating point number such that1/2 < z < 1,
then the difference 1 — z = fi(1 — z). Moreover, the last bit of the binary
representation of fl(1 —z) is 0.

Proof. Hz =1 or z = 1/2 the result is obvious, so we look at the case
where 1 >z > 1/2. Letd =z—1/2. Thenl—z =1~ (1/24d) =1/2—d.
The binary expansion for d must look like .0bbb...bb where there are p bits
in the expansion, the first is zero, and the rest can be either zeros or ones,
but at least one of them is a one. Clearly now we are computing

.1000...00
— .0bbb...bb

which is a p-bit number whose first bit must be zero since the result is
less than 1/2. Hence, upon normalization the exactly computed result is
an element of F, with its last bit a zero. O

4 Why does it work?

Let us consider the case where the following code fragment is executed

elseif [z3| > |z:1|

=1z1/z2;
s =sqrt(1/(1 +17));
b=s%
¢ =sqrt(1 — b);

In this case 0 <t <1 and thus 1/2 < 1/(1 412) < 1. After taking the
square root we square s and make an assignment to force a rounding, b
should be a number between 1/2 and 1. It is possible for b to be slightly
less than 1/2 at this point, we will discuss this later. For now assume
b > 1/2. We now compute ¢ = /1 — b, there is no reason to force an
intermediate rounding for 1 —b with an assignment since this is computed
exactly anyway. Now note that from theorem 1 we know that ¢? = (1 —
b) + 1ulp where the error is one ulp of b. Let .sss...ss be binary expansion
of f1(s?), and let .0bb...bb0 be the binary expansion of 1 — b, then, in the
worst case, the binary expansion of fl(c?) must be .05b...bb0 % .000...006,
where § can be either 0 or 1, it will be more usual that the § will be further
to the right. Then, in binary, ¢ + % must be

.555...88
+ .0bb...5b0
+ .000...006

The sum is either 1, or it is 1.000...001 which rounds to 1 by the round
to even rule, or .111...111 which also rounds to 1 by the round to even
rule. If the é is further to the right then simple rounding will give us a 1.

There is a problem if b is less than 1/2. This happens in IEEE 754
single precision calculations since the square of the square root of 1/2 here
is less than 1/2. This only occurs if 1/(1 + %) is sufficiently close to 1/2
so one can avoid it with a simple trap. This is not a problem in IEEE 754
double precision calculations and the code will work as written.

One can make a variation on this algorithm which preserves the com-
putational orthogonality but reduces the Frobenius norm of the difference
between the computationally orthogonal Givens’ rotation and the classi-
cally computed one. To do this first compute the classical Givens’ rota-
tion. Then check to see if it is computationally orthogonal. If it is then
stop. Otherwise compute the computationally orthogonal rotation. Then
use bisection on the smaller of ¢ or s to find the computationally orthog-
onal rotation which is closest to the classical one. It is not clear that
one would want to do this. The algorithm we have given tries to find a
computationally orthogonal rotation that is as close to a truly orthogonal
rotation as possible. Using a bisection as just described would take you
away from this point.

5 Another Algorithm for Rotations

The following is yet another variation on the theme of orthogonal rota-
tions. It uses techniques from simulated extended precision (SEP) arith-
metic to do its work and is written for IEEE 754 double precision arith-
metic (although it can be modified to work in single precision). Experi-
ments with random vectors from ®? with uniformly distributed elements
show that it is computationally orthogonal roughly 95% of the time. These
experiments also show that when the rotation is not exactly orthogonal
then the diagonal of GTG contains the number directly to the left of 1 in
the floating point system.

ifzz =0
c=1;
s =0;

elseif |z2| > |z4|
t=z1/z2;

s = sqrt(1/(1 + £%));
bb = 134217728 * s;
b= (s — bb) + bb;

a2

bb = s —b;

tmp = b?;
dd = 2 * b * bb;
d = tmp + dd;
dd = ((tmp — d) + dd) + bb?;
b=1-d;
b=">—dd;
c = sign(t) *x sqrt(b);
else
t=z2/21;

¢ =sqrt(1/(1 4 t%));
bb = 134217728 % ¢;
b= (c— bb)+ bb;
bb=c—b;
tmp = b%;
dd = 2 * b x bb;

= tmp + dd;
dd = {(tmp — d) + dd) + bb?;
b=1-d;
s = sign(t) * sqrt(b);

end

References

[1] G.H. Golub and C.F. Van Loan. Matriz Computations, Johns Hop-
kins University Press, 1983.

DISTRIBUTION LIST

Director

Defense Tech Information Center

Cameron Station
Alexandria, VA 22314

Research Office

Code 81

Naval Postgraduate School
Monterey, CA 93943

Library

Code 52

Naval Postgraduate School
Monterey, CA 93943

Professor Richard Franke
Department of Mathematics
Naval Postgraduate School
Monterey, CA 93943

Dr. Richard Lau

Office of Naval Research
800 Quincy St.
Arlington, VA 22217

Dr. William Gragg, Code MA/Gr
Department of Mathematics
Naval Postgraduate School
Monterey, CA 93943

(2)

(1)

(2)

(1)

(1)

(1)

